Entrer un problème...
Algèbre linéaire Exemples
[1h4−510−24]
Étape 1
Étape 1.1
Perform the row operation R2=R2+5R1 to make the entry at 2,1 a 0.
Étape 1.1.1
Perform the row operation R2=R2+5R1 to make the entry at 2,1 a 0.
[1h4−5+5⋅110+5h−24+5⋅4]
Étape 1.1.2
Simplifiez R2.
[1h4010+5h−4]
[1h4010+5h−4]
Étape 1.2
Multiply each element of R2 by 110+5h to make the entry at 2,2 a 1.
Étape 1.2.1
Multiply each element of R2 by 110+5h to make the entry at 2,2 a 1.
[1h4010+5h10+5h10+5h−410+5h]
Étape 1.2.2
Simplifiez R2.
[1h401−45(2+h)]
[1h401−45(2+h)]
Étape 1.3
Perform the row operation R1=R1−hR2 to make the entry at 1,2 a 0.
Étape 1.3.1
Perform the row operation R1=R1−hR2 to make the entry at 1,2 a 0.
⎡⎢⎣1−h⋅0h−h⋅14−h(−45(2+h))01−45(2+h)⎤⎥⎦
Étape 1.3.2
Simplifiez R1.
⎡⎣104+4h5(2+h)01−45(2+h)⎤⎦
⎡⎣104+4h5(2+h)01−45(2+h)⎤⎦
⎡⎣104+4h5(2+h)01−45(2+h)⎤⎦
Étape 2
The pivot positions are the locations with the leading 1 in each row. The pivot columns are the columns that have a pivot position.
Pivot Positions: a11 and a22
Pivot Columns: 1 and 2
Étape 3
The rank is the number of pivot columns.
2